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Opinion
Systemic signaling pathways enable multicellular
organisms to prepare all of their tissues and cells to
an upcoming challenge that may initially only be sensed
by a few local cells. They are activated in plants in
response to different stimuli including mechanical inju-
ry, pathogen infection, and abiotic stresses. Key to the
mobilization of systemic signals in higher plants are cell-
to-cell communication events that have thus far been
mostly unstudied. The recent identification of systemi-
cally propagating calcium (Ca2+) and reactive oxygen
species (ROS) waves in plants has unraveled a new
and exciting cell-to-cell communication pathway that,
together with electric signals, could provide a working
model demonstrating how plant cells transmit long-
distance signals via cell-to-cell communication mecha-
nisms. Here, we summarize recent findings on the ROS
and Ca2+ waves and outline a possible model for their
integration.

Cell-to-cell communication
The primordial leap(s) from unicellular to multicellular life
initiated an exciting evolutionary race for a highly sophis-
ticated and efficient cell-to-cell communication network. In
plants, cell-to-cell communication occurs via at least three
different routes: (i) symplastic – between different cells
within the same tissue, or among tissues, that are cyto-
plasmically connected via plasmodesmata; (ii) vascular –
between different groups of cells or tissues that are con-
nected via the phloem or xylem vessel systems; and (iii)
apoplastic – between adjacent cells within a tissue, or over
longer distances such as between different tissues, but via
the extracellular space. Such plant communication sys-
tems are also defined by their range. When different cells
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within the same tissue, for example a root branch or a leaf,
communicate with each other it is generally referred to as
local communication or local response, and when different
cells within a specific tissue communicate with the entire
plant it is typically referred to as systemic communication
or systemic response.

Systemic responses in plants have been further divided
based on their functions into: systemic acquired resistance
(SAR) responses that are typically initiated by pathogens
(e.g., virus, bacteria, or fungi), systemic wound responses
that are activated by insects or mechanical injury; systemic
acquired acclimation (SAA) that is triggered by abiotic
stresses (e.g., high light, UV, heat, cold, salinity), systemic
metabolic responses that are produced by changes in the
level of sugars, phosphate, or other metabolites; and sys-
temic developmental responses that are used to coordinate
growth and development such as the control of stomatal
distribution. The ultimate goal of these systemic signaling
pathways is thought to be activating response mechanisms
in remote systemic tissues, for example pathogen defenses
during SAR or acclimation mechanisms during SAA. From
an evolutionary point of view systemic signaling mecha-
nisms improve the ability of the organism to prepare all of
its tissues to an upcoming challenge that may initially only
be sensed by a few local tissues or cells. Among the many
different messengers that have been proposed to mediate
cell-to-cell communication in plants are: electric signals,
RNA molecules, different volatiles such as methyl salicy-
late and methyl jasmonate, different peptides and protein
molecules, different metabolites such as salicylic acid (SA),
jasmonic acid (JA) and azelaic acid, hormones such as
auxin and abscisic acid (ABA), and redox and reactive
oxygen species (ROS) [1–4].

Recent studies have highlighted the importance of
rapid systemic responses for the acclimation of plants to
abiotic stresses focusing on two known players of this
complex network of cell-to-cell communication, namely
the ROS wave and electric signals [2,5–7]. A new and
Trends in Plant Science, October 2014, Vol. 19, No. 10 623

http://crossmark.crossref.org/dialog/?doi=10.1016/j.tplants.2014.06.013&domain=pdf
http://dx.doi.org/10.1016/j.tplants.2014.06.013
mailto:ron.mittler@unt.edu


Opinion Trends in Plant Science October 2014, Vol. 19, No. 10
mostly unexpected player, namely the calcium (Ca2+) wave,
now joins these elements of the systemic communication
machinery [8]. In this paper we will attempt to integrate the
findings from these different studies and propose a new
model for rapid cell-to-cell communication in plants.

The ROS wave and its biological role
Perhaps among the most evolutionary-conserved of mes-
sengers, ROS are used for cell-to-cell communication by
unicellular and multicellular organisms. Because ROS can
be charged (e.g., superoxide radical), uncharged (e.g., hy-
drogen peroxide), or lipophilic (e.g., lipid peroxides), they
can be confined to certain subcellular compartments or
easily travel through membranes. In addition, because
their levels are controlled by a delicate balance between
their production and scavenging they do not need to be
stored in a particular compartment and could be rapidly
generated and/or removed anywhere in the cell or the
apoplast. For example, a burst of ROS production is initi-
ated in plant or animal cells in response to many different
biotic or abiotic stimuli, and ROS produced during this
burst by respiratory burst homolog (RBOH or NOX) pro-
teins was shown to diffuse from the site of production to
adjacent cells in plants and animals [9,10]. These ROS
have an important biological role in the activation of local
defense or acclimation mechanisms.

Although certain ROS such as hydrogen peroxide are
stable and can diffuse over long distances in different
tissues, they are sensitive to ROS-scavenging enzymes
such as peroxidases and catalases that are abundant in
plant tissues. This ubiquitous scavenging activity led to the
idea that ROS are not able to diffuse over long distances in
plants and so are unlikely to represent a mobile element of
systemic communication. Recently, however, a new mech-
anism for rapid, long-distance cell-to-cell communication
utilizing ROS was described [5–7]. Application of different
abiotic stresses such as high light, heat, salinity, cold, or
mechanical injury to a particular tissue was found to
initiate an enhanced production of ROS in the affected
local tissue, as well as to trigger a systemic autopropagat-
ing wave of ROS production that traveled from the affected
tissue to the entire plant at a maximal rate of approxi-
mately 8.4 cm/min (Figure 1A,B). This process was depen-
dent on the presence of the respiratory burst homolog
protein RBOHD (a superoxide-generating NADPH oxi-
dase) and was accompanied by the accumulation of hydro-
gen peroxide in the apoplast of cells along the systemic
path of the signal. The autopropagating nature of the
signal suggested that each cell along its path activated
its own RBOHD enzymes and generated ROS capable of
triggering all adjacent cells to undergo the same process.
This mechanism appeared to resemble the ROS-induced
ROS-release (RIRR) response used to communicate be-
tween individual mitochondria in human muscle cells
[11,12]. Because each cell along the path of the systemic
signal actively produced ROS, the chances of this ROS
being scavenged by, for example, peroxidases in the apo-
plast were lower. Thus, ROS such as hydrogen peroxide
produced by the dismutation of the superoxide radical
generated by RBOHD could now be used as a long-distance
signal. External application of ROS failed however to
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trigger the ROS wave indicating that other mechanisms
could be involved in its propagation (see below).

Recent functional analysis of the ROS wave demonstrat-
ed that it was required for the activation of SAA in systemic
tissues of plants in response to local application of high
light or heat stresses, indicating that the ROS wave has an
important biological function in the acclimation response
of plants to abiotic stresses [7]. Interestingly, although
the ROS wave was required for the induction of SAA in
systemic tissues in response to different stresses, it could
not convey abiotic stress specificity to this response. This
observation suggests that the main function of the ROS
wave is to prime the systemic tissue for SAA activation
and that other more abiotic stress-specific signals (e.g.,
signals specifying high light-, heat-, or wounding-related
signals) are involved in mediating a stress-specific SAA.
The ROS wave could therefore be viewed as an engine or
an essential component of the signaling network that
mediates the SAA of plants to abiotic stresses. At least
during systemic responses to heat stress, the ROS wave
was found to function in coordination with ABA in sys-
temic tissues [7].

The recent functional analysis of the ROS wave has also
identified an interesting link between ROS production by
RBOH proteins and electric signals. Electric signals in
plants have been known for many years. They manifest
as changes in membrane potentials or electric currents
that can rapidly travel for long distances in plants and
were recently demonstrated to have an important role in
the SAA of plants to high light stress [13]. It was found
that, in mutants lacking the RBOHD protein required for
the ROS wave, at least one type of systemic electric signal
was compromised [7]. This link between the ROS wave and
systemic electric signals further suggested that the ROS
wave is essential for the propagation of rapid systemic
signals in plants and that RBOH proteins could be viewed
as the engines of systemic signaling. One of the most
important aspects of RBOH proteins is that they link
Ca2+ signaling with ROS signaling. A recent study has
indeed demonstrated that Ca2+-dependent protein kinase
5 (CPK5) is important for the propagation of the ROS wave
in plants [14].

The Ca2+ wave and its biological role
As with ROS, changes in cytosolic Ca2+ are ubiquitous
signals in biological systems [15] and long-range, systemic
signals linked to Ca2+ changes have long been hinted at in
the literature. For example, transport of hormones in the
vasculature has been proposed to trigger Ca2+ changes at
distant sites. Thus, ABA produced by the roots in response
to water stress is thought to accumulate in the leaves,
eliciting Ca2+-dependent signaling responses in guard cells
[16]. Likewise, Ca2+ itself being transported in the tran-
spiration stream has been proposed to accumulate in the
leaves, again triggering Ca2+-dependent signaling cas-
cades, in this case related to the Ca2+-sensing receptor
(CAS) sensory system of the plastid [17]. In tobacco tran-
sient increases in the concentration of cytosolic Ca2+ in the
aerial parts of the plant have been reported to occur within
5 min of localized cold shock to the root system [18].
Similarly, in bean wounding of the tip of a leaf led to an
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Figure 1. The reactive oxygen species (ROS) and calcium (Ca2+) waves. (A) Time-lapse video imaging of the ROS wave using a Zat12:luc reporter gene showing the spread

of the ROS wave from an injured Arabidopsis thaliana leaf (arrow) to an adjacent systemic leaf. Experiment was performed as described in [5]. (B) Wound-induced ROS

wave in an Arabidopsis seedling stained with the H2O2-specific dye Amplex-red� showing the local and systemic development of the ROS signal following injury (solid

arrow). Experiment was performed as described in [5] using a 10-day-old Arabidopsis seedling germinated in the dark for 5 days to produce a long hypocotyl. (C)

Transmission of the Ca2+ wave in response to local salt stress. Experiment performed as described in [8]. Propagation of a tissue-specific Ca2+ wave through cortical and

endodermal cells generated in response to 100 mM NaCl applied to �50 mm of the root tip. Representative images are shown for 60 s, 120 s, and 180 s (blue arrows in the

graph) following local salt stress in the root tip. Ca2+ was monitored using plants expressing the green fluorescent protein (GFP)-based biosensor YCNano65. For this

sensor, an increase in the ratio of fluorescence resonance energy transfer (FRET) signal:cyan fluorescent protein (CFP) signal reflects an increase in Ca2+ levels. Scale

bars = 50 mm. Data represent mean � S.D., n = 18. Abbreviations: cor, cortex; en, endodermis; ep, epidermis; ROI, region of interest; va, vasculature.
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increase in the cytosolic Ca2+ concentration in the vascu-
lature of the same leaf but centimeters distant from the site
of damage [19]. In this case, the increase in Ca2+ concen-
tration was correlated with the localization of Ca2+ chan-
nels, leading to a model where a propagating signal elicited
by the wound led to the gating of Ca2+ channels and so to
the distant Ca2+ signal.

Thus, there is strong evidence for stress signals trigger-
ing Ca2+-dependent events in distant tissues. However,
precisely how the site of perception and response are coupled
and the possible relationship between the ROS wave and
these Ca2+-dependent events remains largely undefined.

It is thought that information about the nature of
stimuli perceived by plant cells may well be encoded in
the spatial and temporal dynamics of cellular Ca2+ changes,
the so-called Ca2+ signature of the stimulus [15]. Decoding
of these Ca2+ signatures would then lead to stimulus-
specific cellular responses. Consistent with such ideas, the
frequency of transients in cytosolic Ca2+ appears important
for signaling in stomatal guard cells [16,20] and Nod factors
elicit symbiosis-related genes in Medicago truncatula but
only after the target cells have accumulated 36 spikes in
nuclear Ca2+ concentration [21]. Biochemical mechanisms
for responding to specific frequencies of Ca2+ transients
have also been reported, such as the fine-tuned regulation
of the kinase activity of mammalian Ca2+/calmodulin-de-
pendent protein kinase II (CaM kinase II) by the frequency
of cellular Ca2+ transients [22]. At the transcriptional level
of response, the authors of this study [23] applied electrical
stimulation to generate Ca2+ changes in specific patterns in
Arabidopsis thaliana and then used microarray analyses to
follow transcriptional responses. Specific patterns of Ca2+

change were observed to be linked to specific and unique
transcriptional changes. In addition, this analysis led to the
identification of a common Ca2+-response element (CARE)
in several of the promoters of the upregulated genes. This
CARE had already been discovered in another guise, as
an ABA response element (ABRE), providing a strong
625
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candidate for a mechanistic link between ABA and Ca2+

signaling. However, these kinds of cellular reactions to
specific Ca2+ signatures are generally discussed in the
context of local stimulus response. Any role these systems
might have in the systemic transmission of information
about specific stimuli remains undefined.

There are good candidates for some of the local triggers
of these kinds of stress-related Ca2+-dependent responses.
For example, damage to cells is thought to cause ATP to
leak to the extracellular space where it triggers an increase
in cytosolic Ca2+ concentration in adjacent cells, very likely
through the recently defined Does not Respond to Nucleo-
tides 1 (DORN1) receptor kinase perception system [24].
However, as noted below for ROS, long-distance signaling
is too fast to be supported by diffusion of a chemical
messenger such as eATP. In Arabidopsis, wounding leads
to rapid (within minutes) increases in the defense hormone
jasmonic acid in distant leaves, requiring a signal that
moves at least at 450–700 mm/s [25,26]. The wound signal
also correlates with a rapidly propagating membrane
potential change that is dependent on the glutamate-
receptor-like (GLR) channels: GLR3.2, GLR3.3, and
GLR3.6 [27]. The involvement of such channels provides
one hint as to a possible mechanism for rapid signal propa-
gation. Knockouts in members of the GLR family of chan-
nels have been shown to attenuate amino acid induced
increases in cytosolic Ca2+ in Arabidopsis, for example
[28,29], and heterologous expression of the plant GLR3.4
has definitively shown that, for this particular channel at
least, these genes encode bona fide Ca2+-permeable chan-
nels [30]. Thus, Ca2+ fluxes themselves may well be compo-
nents of the machinery of long-distance signal propagation.

Recent measurements of plant-wide dynamics of
changes in cytosolic Ca2+ concentrations in response to
localized stress application strongly support the idea of
systemic Ca2+-dependent signal propagation. Thus,
advances in the green fluorescent protein (GFP)-based
bioreporters available for the imaging of Ca2+ signals
[31] have allowed a much higher sensitivity analysis of
Ca2+ changes than previously available in plants. Such
measurements have revealed that, in response to local
stimulation such as salt stress in the root tip, a wave of
increased cytosolic Ca2+ level does in fact move systemi-
cally through the plant, paralleling the mobile, systemic
nature of the ROS wave (Figure 1C) [8]. The Ca2+ wave
travels at �400 mm/s and can spread throughout the root
system and be transmitted to the aerial parts of the plant.
Blocking the wave with the Ca2+ channel blocker lantha-
num (La3+) not only inhibited transmission of the Ca2+

wave but also blocked systemic induction of ROS-regulated
transcriptional markers such as ZAT12, strongly implying
that these two systemic signaling systems, the ROS- and
the Ca2+-wave, are closely linked. The Ca2+ wave is limited
to rapid transmission through the cortex and endodermis
in the root, indicating a cell type specific machinery spe-
cialized for the funneling of this information through the
plant. In addition, knocking out two pore channel (TPC1), a
vacuolar ion channel, blocks the propagation of the sys-
temic Ca2+ wave. TPC1 is a cation-permeable channel
(including Ca2+) and has been proposed to act in plant
CICR [32], although this idea remains controversial [29].
626
Channel activity of TPC1 is sensitive to cytosolic and
vacuolar Ca2+ levels [33] suggesting vacuolar and cytosolic
Ca2+ dynamics could have an important role in modulating
channel activity and so sustaining the wave. Interestingly,
TPC1 has been shown to be sensitive to ROS (H2O2) in
patch-clamp experiments [34]. This observation provides
one mechanism for a close mechanistic link between Ca2+

and ROS waves. However, as with the ROS wave, local
application of H2O2 could not trigger a self-propagating
Ca2+ wave, implying further components of the wave-gen-
eration machinery have yet to be defined.

Paralleling the links between ROS and systemic electric
signaling, a relationship between Ca2+ and electric signal-
ing is also well supported in the literature. Ca2+-driven
action potentials are seen in animals and plants, where
Ca2+ can have a direct or indirect role in the electric
changes. For example, Ca2+-dependent gating of plasma
membrane ion channels can regulate the propagation of
the membrane potential changes underlying plant action
potentials [35]. More rarely, the Ca2+ fluxes themselves
can drive these potential changes, as recently reported for
the touch-induced propagating action potential that is
supported by the mammalian piezo-type mechanosensitive
ion channel component 2 (PIEZO2) Ca2+ channel [36].
Systemic Ca2+ release has also been closely linked with
propagating signals through electric phenomena such as
wave potentials [18]. If similar events underlie the propa-
gating Ca2+ signals described above, electric and Ca2+

signals would be inextricably linked.

How are Ca2+ and ROS signaling integrated in cells?
At least two different functional processes could link
Ca2+ and ROS signaling in plant cells: Ca2+-induced ROS-
production (CIRP) and ROS-induced Ca2+-release (RICR).
CIRP could be mediated by different ROS-producing mech-
anisms with RBOH proteins being the most studied to date.
These superoxide-generating NADPH oxidases are primar-
ily thought to be localized on the plasma membrane (PM),
but could potentially also be found on additional cellular
membranes such as the mitochondria [37]. RBOH proteins
were shown to be activated by Ca2+ via several different
routes including direct binding of Ca2+ to the EF-hand
motifs on the N terminus of RBOH proteins, Ca2+-induced
phosphorylation of RBOH by kinases such as CPK5, calci-
neurin B-interacting protein kinase 26 (CIPK26) or botrytis-
induced kinase 1 (BIK1), binding of plant Rho-type (ROP)-
GTPase, and Ca2+-induced accumulation of phosphatidic
acid (PA) that binds to different motifs at the N terminus
of RBOH (Figure 2) [9,38–40].

RICR by contrast could be mediated by a direct ROS-
induced activation or suppression of a Ca2+ channel or pump.
Indeed, ROS have been shown to activate hyperpolarization-
activated Ca2+-permeable channels in root cells [41–43],
as well as Ca2+-influx channels in stomates [20,44] and
Fucus rhizoids [45]. At a molecular or genetic level, the plant
Ca2+-permeable Stelar K+ outward rectifier (SKOR) channel
[46] and the Ca2+ conductance(s) involving annexin1 [47]
have been shown to be responsive to H2O2. Alternatively,
ROS-induced secondary messengers such as cyclic nucleo-
tides could trigger Ca2+ release from different channels, for
example, cyclic-nucleotide gated channels (CNGCs).
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Figure 2. Integration of calcium (Ca2+) and reactive oxygen species (ROS) signaling in plant cells. (Left) ROS can activate or suppress calcium channels resulting in the

formation of ROS-induced calcium signatures in a process termed ROS-induced calcium release (RICR). (Right) Ca2+ can directly or indirectly regulate the production of ROS

by respiratory burst homolog (RBOH) proteins resulting in the generation of superoxide radicals that are dismutated to H2O2 spontaneously or via superoxide dismutase

(SOD). This process is termed calcium-induced ROS production (CIRP). The two processes depicted on the left and right of the figure (RICR and CIRP) generate different

regulatory circuits with feedback function in cells. These are involved in controlling many different processes including development, response to biotic and abiotic stimuli,

and the Ca2+ and ROS waves. Abbreviations: CBL1, calcineurin B-like protein 1; CBL9, calcineurin B-like protine 9; CIPK26, calcineurin B-like interacting protein 26; CPK5,

calmodulin domain protein kinase 5; BIK1, botrytis-induced kinase 1; FAD, flavin adenine dinucleotide; NAD, nicotinamide adenine dinucleotide; PA, phosphatidic acid.
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What is the relationship between the Ca2+ and the ROS
waves and how are they integrated?
Plant tissues present a number of barriers for the transport
of signals. The apoplast for example contains high levels of
Ca2+ and is not a suitable media for the mediation of Ca2+

signals. The apoplast environment also contains a number
of different redox and ROS production and removal mech-
anisms including superoxide dismutases, peroxidases, dif-
ferent oxidases, glutathione, ascorbic acid, and other
enzymes of the ROS gene network [48]. ROS signals can
accumulate in the apoplast but to keep them from being
attenuated by ROS-scavenging mechanisms, their produc-
tion needs to be constantly turned on. The plasma mem-
brane itself is a very suitable media for membrane-
potential-related electrical signals but, due to its sensitivi-
ty to lipid peroxidation, it is not the best media for the
transport of ROS signals, and of course Ca2+ that is hydro-
philic cannot travel long distances within membranes. In
contrast to the apoplast, the cytosol is a great media for
Ca2+ signals because Ca2+ levels in the cytosol are kept to
a minimum. Manipulating ROS levels in the cytosol is
however a different story because of the sensitivity of
many cytosolic and nuclear systems for oxidative damage.
Travel of long-distance systemic signals through plant
tissues could therefore be mediated at least in part in the
apoplast for ROS, the PM for electric signals, and the
cytosol for Ca2+, as well as for short distances for ROS
(Figure 3A). But how do these three signals interact with
each other?

A model that could integrate the ROS and Ca2+ waves is
outlined in Figure 3B. Local sensing of abiotic stress
triggers Ca2+ accumulation within the initiating cells at
the local tissue. The enhanced levels of Ca2+ in these cells
triggers enhanced ROS production by RBOH proteins via
CPK5, CBL1/9-CPK26, or other Ca2+–RBOH interactions
(Figure 2). Additional CIRP mechanisms may also be
involved in this process. Once RBOH proteins are activated
in the initial cell(s), they cause the accumulation of ROS in
the apoplast, which is in turn transported into neighbor-
ing cells via aquaporins or other channels. Two possible
mechanism may then ensue: (i) apoplastic ROS entering
adjacent cells may trigger RICR via TPC1, annexins, or
other mechanisms, such as ROS-activated PM Ca2+ chan-
nels; and/or (ii) elevated cytosolic Ca2+ levels from the
initiating cells transported via plasmodesmata to adja-
cent cell(s) may trigger CICR by TPC1 or other Ca2+

channels. The resulting enhanced cytosolic Ca2+ levels
in the adjacent cells would then trigger the RBOH pro-
teins of these cells. This process of Ca2+ inducing ROS
production that induces Ca2+ release would then continue
in a cell-to-cell autopropagation manner. The model pre-
sented in Figure 3B integrates the ROS and Ca2+ waves
into one long-distance systemic signaling mechanism.
The finding that the initiation of the ROS or Ca2+ waves
can be blocked by inhibitors of Ca2+ signaling such as
La3+ and that the propagation of the Ca2+ wave, as well as
the induction of SAA in systemic tissues, requires the
function of RBOH proteins supports the validity of the
model proposed in Figure 3B.

A possible failing of the model presented in Figure 3B is
the rate at which the systemic ROS and Ca2+ waves
propagate. Rates of >400 mm/s cannot be explained by
simple diffusion of ROS or Ca2+ over long distances
(Figure 4A), especially given the active buffering and
627
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Figure 3. Cellular pathways and a model for the integration of the reactive oxygen species (ROS) and calcium (Ca2+) waves. (A) Possible cellular routs for mediating electric

signals and the ROS/Ca2+ waves in plant cells. (B) Integration of the ROS and Ca2+ waves in cells via the function of respiratory burst homolog (RBOH) proteins (yellow),

Ca2+-dependent protein kinases such as calcium-dependent protein kinase (CPK)5/26 (green), and calcium channels such as two pore channel (TPC)1 (red). The vacuole is

depicted in light blue. Abbreviations: PD, plasmodesmata; PM, plasma membrane; CICR, calcium-induced calcium release; RICR, ROS-induced calcium release.
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sequestering systems that can limit the long-range move-
ment of Ca2+ increases through the cytoplasm and ROS
in the apoplast. To account for such speeds an active
process of ROS or Ca2+ transport should be involved in
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cells mediating the rapid movement of signal across the
cell from complex to complex (Figure 4B). ROS and/or Ca2+

may be packed in vesicles that are actively transported
along the cytoskeleton from one side of the cell to the other
(Figure 4C). A process of RIRR may occur between orga-
nelles such as mitochondria or chloroplasts similar to the
rapid RIRR mode of communication between mitochondria
of human cells [11,12] (Figure 4D). In addition, perception
of the ROS/Ca2+ wave on one side of the cell may trigger
electrical signals that would propagate at a rapid rate
across the PM from one side of the cell to the other
(Figure 4E). The finding that systemic voltage potentials
are dependent on the presence of RBOH proteins [7] sup-
ports the latter model (Figure 4E) and suggests a new and
more inclusive model in which ROS, Ca2+, and electric
signals are integrated to mediate rapid systemic signals.
In this model the processes described in Figure 3B will
function at the junctions between cells to link the ROS and
Ca2+ waves, and electric signals will connect one polar side
of the cell with the other (Figure 4E). This model based
around the interaction of electric signals and the ROS/Ca2+

networks would help address a major issue with the other
models as to whether diffusion of chemical messengers
within or between cells could account for the rapid move-
ment rate of the systemic signal (Figure 4E). Of course
further studies are required to elucidate the precise mech-
anism that mediates rapid systemic signals in plants, but
at present the model shown in Figure 4E appears to
provide the most sensible explanation for the rate of the
ROS and Ca2+ waves.

Concluding remarks and future perspectives
Additional interesting questions that arise from these new
findings of wave-based systemic signaling include the fol-
lowing. (i) How are the two waves initiated? Is it an initial
burst of ROS or a rise in cytosolic Ca2+ that is initially
triggered in the local cells? (ii) How are the Ca2+ and ROS
waves perceived at the target tissue? What are the decod-
ing mechanisms that perceive the signals and trigger
defense or acclimation mechanisms? At least with respect
to the ROS wave it was found that ABA function is needed
to induce SAA in systemic tissues upon perceiving the ROS
wave and that ABA accumulation in the systemic tissue
was dependent on the ROS wave [7]. Of course other plant
hormones such as auxins, jasmonates, and ethylene could
be involved in this process. (iii) What is the role of plas-
modesmata in the propagation of the ROS and Ca2+ waves?
Although little is known about the transfer of Ca2+, ROS, or
redox equivalents through these highly regulated pores,
the possibility that they are involved in propagating long-
distance systemic signals should be studied. (iv) Why is
hydrogen peroxide application to plant tissues not enough
to trigger the ROS and/or Ca2+ waves? It is possible that
accumulation of ROS and Ca2+ is required, as well as
crosstalk with other cellular signals. The need for specific-
ity in rapid systemic signaling may be the answer here
because only when a signal comes in its biological context
are the ROS and/or Ca2+ waves initiated. Thus, simply
applying hydrogen peroxide without a biological context
cannot trigger SAA. (v) What was the evolutionary path
that led to the formation of the ROS and Ca2+ waves? Did
they co-evolve? Perhaps evolutionary studies of the RBOH,
CPK, and the TPC1 gene families, as well as additional
proteins involved in the Ca2+ and ROS networks, will
answer this question. (vi) What is the relationship of the
Ca2+ and ROS waves with electrical signals? It is known
that ROS accumulation at the surface of the PM could
cause membrane depolarization, but are there specific
channels, such as glutamate-receptor-like channels, that
regulate electric signals in response to changes in ROS
and/or Ca2+ levels? Future studies may answer some or all
of these questions.
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